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1 Disclaimer

This report is for informational purposes only and does not con-
stitute an offer or solicitation to buy or sell any securities, fi-
nancial products or instruments, nor provides investment advice
or other services by Simtopia ltd. The material is not intended to
be used as a guide to investing or as a source of any specific in-
vestment recommendations. Any discussion of the risks contained
herein with respect to any product should not be considered to
be a disclosure of all risks or a complete discussion of the risks
that are mentioned. You should neither construe any of the ma-
terial contained herein as business, financial, investment, hedg-
ing, trading, legal, regulatory, tax, or accounting advice. Any
views expressed in this report were formed based on the informa-
tion available to us at the time of writing the report. Changed
or additional information could cause such views to change. All
information is subject to necessary amendments that may reflect
changes in market conditions or economic circumstances.
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2 Overview

The Panoptic protocol provides a mechanism for entering a variety of long and
short margined positions on Uniswap v3; through the mechanism of entering
into Panoptions. Conversely, Panoptions can be thought of as perpetual options,
with a payoff function based on the value of the assets that a liquidity provision
position in Uniswap v3 holds.

It has been shown empirically [5] and experimentally [9] that liquidity providers
(LPs) in constant function markets (in particular, Uniswap v3) lose money on
average. Indeed, from e.g. [5, Table 2], the average LP transaction in the
ETH/USDC pool (from May 2021—August 2022) resulted in a position loss
of �1.64%, and fee income of 0.155% of the size of the initial trade, with an
average hold time of 6.1 days. This agrees broadly with the analysis in [6],
which indicates that holding a Uniswap LP position is less profitable than a
corresponding options position, with the associated streaming premium. We
provide more details in Section 6.

As we will show in Section 4.1, there is a theoretical, arbitrage-free level of
fee income that would make Uniswap LP positions fair. The Panoptic protocol,
by allowing leveraged and short positions in Uniswap v3, can provide a venue
for inefficiencies to be exploited and closed, provided those who enter short-put
Panoptions (moving liquidity from Panoptic to Uniswap v3) are compensated
with appropriate arbitrage-free streaming premia, which will be paid by those
who take more general Panoption positions (moving liquidity from Uniswap v3
back to Panoptic).

The first challenge for the Panoptic protocol is to determine streaming pre-
mia which will close this statistical arbitrage. The difficulty is that this needs
to be done without exposing Panoptic LPs to risk (which ensures that Panoptic
LPs don’t suffer from this statistical arbitrage), and to encourage traders to pref-
erentially trade through the Panoptic protocol, through which they additionally
benefit from leveraged LP provision.

Given the Panoptic protocol also allows leveraged positions, it is necessary
that these be risk managed appropriately. This leads to the importance of
appropriate margin calculations and close-out protocols for market participants,
to ensure counterparty risk is well managed in a decentralized way, and the risks
to different participants in the protocol are well understood.

3 Liquidity provision in constant function markets

In this section, we will draw a connection between a constant function market
(CFM) and a perpetual (American) options contract. We will particularly seek
to derive the impermanent loss (also known as LVR) of a CFM, or equivalently
the arbitrage-free streaming premium of the perpetual option; this is the natural
analogue of the ✓ sensitivity of European options1.

1[7] uses an approximation of the Uniswap-implied perpetual American payoff in terms of
the Black–Scholes value of a covered European call option in order to obtain a variant of the
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3.1 CFM – an overview
A constant function market (CFM) is characterised by

i) The reserves (x1, x2) 2 R2
+ describing amounts of assets in the pool.

ii) A constant function market  : R2
+ ! R which determines the state of the

pool after each trade according to the acceptable fund positions:
�
(x1, x2) 2 R2

+ :  (x1, x2) = constant
 
.

iii) A trading fee (1� �), for � 2 (0, 1].

For the purposes of this report, we assume  : R2
+ ! R to be twice contin-

uously differentiable and convex (see [4]).
To acquire �x1

t of asset x1 at time t a trader needs to deposit a quantity
�x2 = �x2(�x1) of asset x2 into the pool, and pay a fee (1 � �)�x2.2 �x2

and �x needs to satisfy the equation

 (x1
t ��x1, x2

t +�x2) =  (x1
t , x

2
t ) .

Once the trade is accepted the reserves are updated according to

x1
t+1 = x1

t ��x1 and x2
t+1 = x2

t +�x2 .

The relative price of trading �x1 for �x2 is defined as

P 1,CFM
t (�x1)

P 2,CFM
t (�x2)

:=
�x2

�x1
subject to  (x1

t ��x1, x2
t +�x2) =  (x1

t , x
2
t ) .

Observe that

0 = (x1
t ��x1, x2

t +�x2)� (x1
t , x

2
t )

= �@x1 (x1
t , x

2
t )�x1 + @x2 (x1

t , x
2
t )�x2 +O((�x)2) .

Hence the relative price of trading an infinitesimal amount of �x1 for �x2 is
given by

P 1,CFM
t

P 2,CFM
t

:= lim
�x1!0

P 1,CFM
t (�x1)

P 2,CFM
t (�x2)

=
@x1 (x1

t , x
2
t )

@x2 (x1
t , x

2
t )

.

Assume that there is an external market where assets x1 and x2 can be traded
(without frictions) at the prices St = (S1

t , S
2
t ). The no-arbitrage condition in

the case of no fees (� = 1) implies that

P 1,CFM
t

P 2,CFM
t

=
S1
t

S2
t

(1)

streaming premium as the Black–Scholes ✓. This is arguably a formally unnecessary step, as
the streaming premium is well defined for the perpetual directly, without needing the Black–
Scholes model assumptions; even though the connection to classical Black–Scholes theory may
be useful for understanding of the protocol’s construction and implications.

2The fee in Uniswap-V3 is not added to the pool reserves [1]. This is in contrast to
Uniswap-V2.
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Conversely, if 1 would not hold, then (in amarket with no fees) there would
be an arbitrage opportunity between CFM and the external market (assuming
frictionless trading is possible), as it would be possible to purchase a combination
of assets cheaply in one market, and then sell it in the other.

Example 3.1 (GMM). Consider the trading function

 (x1, x2) = (x1)✓(x2)1�✓

for ✓ 2 (0, 1). In the setting with no fees, � = 1, we have (x1
t )

✓(x2
t )

1�✓ =
(x1

0)
✓(x2

0)
1�✓. The no arbitrage relationship (1), in GMM is given by

P 1,CFM
t

P 2,CFM
t

=
✓x2

t

(1� ✓)x1
t

=
S1
t

S2
t

. (2)

The value of the liquidity pool at any time t 2 [0,1), is given by

V (St;x
1
t , x

2
t ) := x1

t · S
1
t + x2

t · S
2
t .

Note that, under no arbitrage and no fee assumptions, it makes no difference
whether the accounting is being done in S or P .

Using (2) we can show that

V (St;x
1
t ) =

✓
1� ✓

✓
+ 1

◆
S1
t x

1
t =

1

✓
S1
t x

1
t

or equivalently

V (St;x
2
t ) =

✓
✓

1� ✓
+ 1

◆
S2
t x

2
t =

1

1� ✓
S2
t x

2
t .

From here we see that the value of the sub-pools with assets x1 and x2 are
✓ · V (St) and (1� ✓)V (St), respectively.

Next, we derive an alternative representation for Vt that does not depend on
(x1, x2

t ). To do that, note that

1 =
V (St;x1

t , x
2
t )

V (St;x1
t , x

2
t )

=
S2
t x

2
t

1� ✓

✓

S1
t x

1
t

.

Hence

V (St;x
1
t , x

2
t ) =

✓
S1
t x

1
t

✓

◆✓

·

✓
S1
t x

1
t

✓

◆1�✓

=

✓
S1
t x

1
t

✓

◆✓

·

✓
S1
t x

1
t

✓

◆1�✓

·

✓
S2
t x

2
t

1� ✓

✓

S1
t x

1
t

◆1�✓

= (x1
t )

✓(x2
t )

1�✓

✓
S1
t

✓

◆✓

·

✓
S2
t

1� ✓

◆1�✓

.
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Observe that

(x1
t )

✓(x2
t )

1�✓ = (x1
0)

✓(x2
0)

1�✓ =) V (St) = (x1
0)

✓(x2
0)

1�✓

✓
S1
t

✓

◆✓

·

✓
S2
t

1� ✓

◆1�✓

,

and

V (S0) = (x1
0)

✓(x2
0)

1�✓

✓
S1
0

✓

◆✓

·

✓
S2
0

1� ✓

◆1�✓

=) V (St) = V (S0)·

✓
S1
t

S1
0

◆✓

·

✓
S2
t

S2
0

◆1�✓

.

In particular when asset S2 is a numeraire and we set ✓ = 1
2 we have

V (St) = 2(x1
0)

1/2(x2
0)

1/2
q
S1
t or V (St) = V (S0) ·

✓
S1
t

S1
0

◆1/2

.

The above example demonstrates two key properties of CFMs:

• A GMM ‘automatically’ rebalances liquidity pools so that the value of the
pools with asset x1 and x2 is ✓ · V (St) and (1� ✓)V (St), respectively

• Providing liquidity to a CFM  is equivalent to entering a long position
on a perpetual derivative on the underlying asset with the payoff dictated
by the value (in terms of price) V .

In Example 3.1 we have exploited a particular structure of GMM to derive
the value of the LP portfolio in terms of asset prices (S1, S2) but not level
of reserves. In turns out there is a generic way of doing that. We begin by
observing that if  defines a constant function market, then it is possible to
apply the implicit function theorem to construct a convex function  : R! R,
called the trading function, such that

 (x1, x2) = 2 ,  (x1) = x2.

That is,  determines the amount of asset x we hold, when we have a given
quantity y. We assume for simplicity that  is continuously differentiable. Given
the reserves (x1

t , x
2
t ), an agent willing to sell �x1 to the pool will receive �x2

such that

x2
t ��x2 =  (x1

t +�x1) =)
�x2

�x1
= �

 (x1
t +�x1)�  (x1

t )

�x1
.

As in 1 the no-arbitrage condition (in the case of no fees (� = 1)) implies that

�@x (x
1
t ) = St .

As  is convex, we can take its Legendre transform, to define

 ⇤(s) = sup
x

n
s · x�  (x)

o
.
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Note that right hand side achieves its (unique) supremum when @x (x) = s.
From 3.1 we see that for s = �St, we have x = x1

t . Hence

� ⇤(�St) = St · x
1
t +  (x1

t ) = St · x
1
t + x2

t = V (St) .

Hence the value of the LP position in the pool is � ⇤(�St) and can be readily
computed using any off-the-shelf convex optimisation algorithm. As  ⇤ is a
convex function, we see that V is concave, and as  is decreasing, we see that
V is increasing.

Example 3.2 (Uniswap V2). For a constant product market (as in Uniswap V2),
 (x1, x2) = x1

· x2 = 2, so  (x1) = 2/x1. We compute  ⇤(s) = �2
p
�s,

and hence V (s) = 2
p
s.

Example 3.3 (Uniswap V3 - Concentrated Liquidity). In Uniswap V3, which
essentially is as a collection of Uniswap V2 pools, liquidity providers specify
the price range [P l, Pu), P l < Pu in which they wish to supply liquidity. For
simplicity, assume that asset two is the numeriare and that level of reserves is
(x1

t , x
2
t ). To facilitate the trade in the range [P l, Pu), Uniswap V3 introduces

Figure 1: Inflated liquidity (x̃1, x̃2) vs actual liquidity (x1, x2)

inflated (virtual) reserves (x̃1
t , x̃

2
t ) such that

Pt =
x̃2
t

x̃1
t

2 [P l, Pu) and x̃1
t x̃

2
t = 2 .

This implies
x̃1
t =


p
Pt

, and x̃2
t = 

p
Pt

Now observe, see figure 1, that

x1
t = x̃1

t � x̃1,u =(
1
p
Pt
�

1
p
Pu

) , where x̃1,u
t =


p
Pu

x2
t = x̃2

t � x̃2,l =(
p

Pt �

p

P l) , , where x̃2,l = 
p

P l) .
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We also see that the constant market function can be re-written as
⇣
x1
t +


p
Pu

⌘⇣
x2
t + 

p

P l
⌘
=  .

The value of the liquidity pool at any time t 2 [0,1), under no arbitrage condi-
tion 1 is given by

V (St;x
1
t , x

2
t ) := x1

tSt + x2 = 
⇣ 1
p
St
�

1
p
Pu

⌘
St + 

⇣p
St �

p

P l
⌘
.

As observed in [2, 3], for any CFM V for any nonnegative, nondecreasing,
concave, 1-homogenous3 payoff function V , there exists a trading function  ,
such that the value of the liquidity provision in CFM with with function  
matches this payoff function. In other words, a CFM with appropriately de-
signed trading function  dynamically adjusts the portfolio held by liquidity
providers so that the value of this portfolio, at any time, is described by the
payoff function V . This gives us two ways to understand a CFM:

• Through the defining trading function  , indicating valid combinations of
the two assets.

• Through the valuation function V , indicating the value of the CFM pool
in terms of the prices of the two assets.

Concentrated liquidity, introduced in Uniswap V3, gives individual LPs con-
trol over what price ranges their capital is allocated to. This gives a practical
way of creating liquidity provision that replicates a given function V , and has
been observed and described in the Panoptic white paper [8].

3.2 Connection with perpetual options
Given a payoff function V , there is a simple connection between liquidity pro-
vision in a CFM and investment in a perpetual American option.

3.2.1 Perpetual option

We begin with a precise definition of a perpetual American contract with stream-
ing premium. As we shall see, liquidity provision in a CFM is equivalent to
entering a long perpetual derivative with the payoff dictated by the function V .
This derivative is written on the underlying assets S = (St)t�0 traded in the
pools.

Definition 3.4. A perpetual contract with streaming premium, written on assets
with price vector S, with payoff function V : Rn

! R, is a agreement between
two parties, referred to as the long side and short side. The long side has the

3That is, �V (S) = V (�S) for all � > 0 and S. Equivalently, we can assume that one of
the assets in St is the numeraire asset, in which case the 1-homogeneity assumption is not
needed.
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right to terminate the contract at any time t � 0, at which point it will receive a
payment of V (St). In return, the long-side must pay to the short side V (S0) at
the time t = 0 of inception as well as a continuous cash-flow of (gt)t�0 per unit
time, referred to as the streaming premium, up until the contract is terminated.

Remark 3.5. While we here describe this transaction as involving an initial
payment, it is possible to avoid this with appropriate margin accounting rules.
Essentially, the long-side would post sufficient margin to account for the risk-
adjusted expected appreciation of value of their position over time, and in ad-
dition to the streaming premium, their margin account value would be marked-
to-market dynamically. For simplicity, we will focus on the initial payment
formulation for now.

3.2.2 Liquidity position in CFM and perpetual option

In order to highlight the connections between a CFM and a perpetual American
option, we make the following observations. In a CFM, a liquidity provider
(CFM-LP)

• initially deposits assets with value V (S0),

• receives fees at the rate ft per unit time (which may vary). These fees
may be withdrawn (under the Uniswap v3 protocol) at any time,

• at some future time ⌧ (of the CFM-LPs choosing), may withdraw their
assets, which will have value V (S⌧ ).

In a perpetual American option with streaming premium and payoff V , an
investor purchasing the option

• initially purchases the option, for a cost V (S0),

• receives the streaming premium at a rate gt per unit time (which may
vary). This streaming premium may be positive or negative, and is re-
ceived immediately,

• at some future time ⌧ (of the investor’s choosing), may exercise the option,
which rewards them with value V (S⌧ ).

As we can see, assuming fees in the CFM are instantaneously predictable (i.e.
the fee to be received from the CFM can be accurately estimated in advance),
a no arbitrage argument suggests that we must have ft = gt, as otherwise one
asset is strictly better than the other in every state of the world (over some short
time horizon), which implies that an efficient market will focus all its trading in
the better of these alternatives.

10



3.3 Panoptions within Uniswap
We can now give a stylized view of the Panoptic protocol, from the perspective of
payoff functions. We have seen that a CFM corresponds to a (perpetual option
with) concave increasing payoff function V , representing the value of the pool
at a given price (if the CFM’s assets were sold in the liquid market). We denote
the payoff function associated to the Uniswap v3 pool (without panoptions) as
V U

The net position of the Panoptic protocol corresponds to the addition of
liquidity to the Uniswap pool. This additional liquidity has value (at a given
price St) given by a function V P (St), which is again a nonnegative concave
increasing function. By working at the level of the payoff functions, we can
see that the Uniswap pool, after the Panoptic protocol moves liquidity into the
Uniswap pool, is described by the modified payoff function

V UP (St) = V U (St) + V P (St).

Given the Panoptic protocol payoff function V P must remain nonnegative
concave increasing, there are limits to the trades that are possible. The require-
ment for nonnegativity corresponds to the assets provided from the Panoptic
liquidity pool, which limits the scale of the payoff functions available.

Suppose a trader wishes to establish a position with (perpetual American)
payoff ⌘(St); where we assume that ⌘ is 1-homogenous. This could be a call,
put or other option. If the current state of V P is given, the option ⌘ is available
if (and only if) the function

V P + ⌘

is also a nonnegative concave increasing function.4 If the trade ⌘ is accepted by
the protocol, the position V P updates to V P + ⌘, which alters the subsequently
available trades.

The most basic trades in the Panoptic protocol (short-put positions, or equiv-
alently, after the addition of capital, covered calls/cash secured puts) are those
trades corresponding to5 a concave increasing payoff ⌘. These trades should be
privileged within the protocol, as they are always available (provided sufficient
liquidity is available from Panoptic LPs, which can be added to the position to
ensure nonnegativity), and provide liquidity for further trading.

More general payoffs (calls, puts, etc...), which involve either decreasing or
convex payoffs, will only be available when V P is sufficiently large and concave
to offset the desired exposures. Note that this implies that general payoffs can
also involve the use of assets from the Panoptic liquidity pool – when accept-
ing a trade ⌘ at time t, the assets committed from the liquidity pool move in

4Note this requirement limits the valid positions ⌘ to those which result in a nonnegative
payoff. This is not so restrictive, as traders will effectively only be exposed to the returns on
⌘, but limits the scale available, through implicit reference to size of the Panoptic liquidity
pool.

5More precisely, any concave increasing payoff can be constructed as the sum of a collection
of short-put positions and risk-free assets.
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value from V P (St) to V P (St) + ⌘(St), despite the Panoptic LP’s market ex-
posure remaining neutral (as the trader entering into the position ⌘ bears the
corresponding market risk).

4 Arbitrage free streaming premia

In this section we will derive a no-arbitrage bound on ft for the long position in a
CFM, and then discuss how the presence of panoptions impact this calculation.

Consider a payoff function V : R+ ⇥ R+ ! R which we assume to be twice
differentiable. Let (fs)s�0 denote the fee rate paid to the CFM-LP who holds
the position with payoff V (this fee depends on the CFM fee and amount of
assets traded in the CFM pools, at the current price level). Equivalently, we
could consider the corresponding perpetual option investor, with a streaming
premium gs = fs.

We consider a liquidity provider (LP) who deposits assets in a CFM. At
time t = 0 the LP invests V (S0), by depositing assets into the liquidity pool.
At any time t the LP can exit the pool receiving V (St). Before they exit, they
continuously receive fees at a rate ft per unit time. (We assume that these can
be obtained continuously through time, as would be the case in a Uniswap v3
market without fees.)

Natural questions arise:

• What are the risks of liquidity provision in a CFM?

• What should the fee rate (ft)t�0 be, to prevent prevent arbitrage?

Remark 4.1. We first study these questions using a classical continuous-time
financial market with no frictions. This gives a reasonable base case for further
development, as the no-arbitrage dynamics implied from the market without fric-
tions will also typically prevent arbitrage in a market with frictions. (Generally
speaking, adding frictions to a market increases the range of arbitrage free so-
lutions.)

4.1 Financial market model and assumptions
We make the following assumptions about the market:

• The agent can borrow and lend any amount of cash at the riskless rate.

• The agent can buy and sell any amount of assets x1 and x2.

• The above transactions do not incur any transaction costs and the size of
a trade does not impact the prices of the traded assets.

We denote the risk free rate (which may be stochastic) by (rt)t�0 and model
the money market as

dBt = rtBtdt , B0 � 0 .
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We assume rt � 0. We further denote the drift and diffusion coefficients (again,
possibly stochastic) of the risky asset shadow prices by µ = (µ1

t , µ
2
t ) 2 R2 and

� = (�(1,1)
t ,�(1,2)

t ,�(2,1)
t ,�(2,2)

t ) 2 R4
+

respectively, and model the shadow price of the risky asset (Si
t)t�0 by

dSi
t = µi

tS
i
tdt+

dX

j=1

�(i,j)
t Si

tdWt, Si
o � 0 , (3)

where W = (W 1
t ,W

2
t ) is a 2-dimensional Brownian motion. We assume that

(µ,�) are sufficiently regular that a (unique strong) solution to (3) exists.

Remark 4.2. By allowing the drift and diffusion coefficients to be arbitrary pro-
cesses we just saying that the prices are non-negative and continuous: our frame-
work incorporates a rich family of common models such as Black–Scholes, He-
ston, SABR or local stochastic volatility models with possibly path dependent
coefficients.

4.1.1 Derivation of arbitrage-free fee rate bound

We will proceed in a similar way to the construction of the predictable loss
in [5], and to classical arguments for no-arbitrage pricing in financial markets.
Consider the wealth process Z of an agent who

• begins with zero capital6,

• initially borrows a quantity V (S0) at the risk-free interest rate, which
they use to establish a CFM position (which they can do by trading in
the liquid market to obtain the desired risky assets for the pool),

• until time t, trades in the liquid market hold a quantity (�i
s) of each asset

at time s.

The dynamics of Zt are given by

Zt = V (St)� V (S0)| {z }
CFM gains

+

Z t

0

2X

i=1

�i
sdS

i
s

| {z }
trading gains

+

Z t

0

⇣
Zs �

2X

i=1

�i
sS

i
s

⌘
rsds

| {z }
interest payments on uninvested wealth

+

Z t

0
fsds

| {z }
CFM fees

.

We assumed V is smooth, hence we can apply Itô’s lemma to obtain

Zt =
2X

i=1

Z t

0

h
@iV (Ss) +�

i
s

i
dSi

s

+
1

2

2X

i,j=1

Z t

0
@i@jV (Ss)dhS

i, Sj
is +

Z t

0

h⇣
Zs �

2X

i=1

�i
sS

i
s

⌘
rs + fs

i
ds.

6This is simply to avoid having to account for the interest they should earn on their initial
capital
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By setting �i
s = �@iV (Ss), we eliminate the first term, giving

Zt =
1

2

2X

i,j=1

Z t

0
@i@jV (Ss)dhS

i, Sj
is +

Z t

0

h⇣
Zs +

2X

i=1

(@iV (Ss))S
i
s

⌘
rs + fs

i
ds.

As the quadratic variation is dhSi, Sj
is = (�s�>

s )
(i,j)Si

sS
j
sds, this simplifies to

dZs

ds
=

1

2

2X

i,j=1

@i@jV (Ss)(�s�
>
s )

(i,j)Si
sS

j
s +

⇣
Zs +

2X

i=1

(@iV (Ss))S
i
s

⌘
rs + fs.

If this quantity is positive, then we have a strategy which earns money with
probability one over a short time period, that is, an arbitrage. Therefore, after
rearrangement, we know that

fs + Zsrs  �
1

2

2X

i,j=1

@i@jV (Ss)(�s�
>
s )

(i,j)Si
sS

j
s �

⇣ 2X

i=1

(@iV (Ss))S
i
s

⌘
rs.

As Z is increasing in f (an agent who earns more fees will be wealthier) and
we assume r � 0, there is a unique value of f such that above equation is an
equality. Using this fee rate, we have dZs/ds = 0 and Z0 = 0, and hence Zs = 0.
We denote this critical value7

f̂s = �
1

2

2X

i,j=1

@i@jV (Ss)(�s�
>
s )

(i,j)Si
sS

j
s �

⇣ 2X

i=1

(@iV (Ss))S
i
s

⌘
rs.

This critical fee rate can also be expressed in a model-free way, as

f̂t =�
1

2

2X

i,j=1

@i@jV (St)
dhSi, Sj

it

dt
�

⇣ 2X

i=1

@iV (Ss)S
i
t

⌘d logBt

dt
.

Notice that the critical fee rate depends on the trading function via @i@jV (S)
(which is negative, as V is concave as long as the trading function  is convex)
and the quadratic variation of traded asset (which is implicitly related to the
level of trading activity).

Note that this argument only uses a long-position in the CFM, and only
establishes8 the inequality bound ft  f̂t. If it were possible to perfectly short-
sell the CFM (or the corresponding perpetual option), then a similar argu-
ment would yield the converse inequality. This may explain why the fee rate
in Uniswap v3, is systematically below the critical fee rate, which is related to
liquidity provision in CFMs yielding persistently poor returns.

7[5] give a similar calculation, to obtain a closely related quantity, which they call the
permanent loss of the CFM.

8The presentation above assumes the agent starts at time 0, and derives the critical fee
rate on this basis. To obtain the inequality bound ft  f̂t for all times, we formally have to
consider starting with zero capital at a time where the inequality is not satisfied, and showing
that this gives a short-term arbitrage opportunity.
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Figure 2: Price and smoothed realised volatility (100-day moving average of
squared log-returns) in ETH-USDC market

Example 4.3. For clarity of presentation we set the risk free interest rate r = 0,
and assume that asset S2 is a numeraire (hence the agent only invests in asset
S = S1). This means that

V (St) = V (S0)
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.

The second derivative of V is given by @2SV (St) = ✓(✓�1)V (S0)
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0
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, which

is negative since ✓ 2 (0, 1). The critical fee rate is then given by
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�2
tS

2
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2
�2
t V (S0)

✓
St

S0
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=
✓(1� ✓)

2
�2
t V (St) � 0 .

As mentioned above, by analyzing the data in the Uniswap v3 pool (e.g. [5])
one can see that, in general, the fee rate is below critical fee rate. Nevertheless,
since one cannot simply short position at the Uniswap (unless using an over-the-
counter bespoke arrangement) it is not clear how one could realise a potential
arbitrage opportunity when f < f̂ .

One possible counter argument is that, due to efficiency of markets, the fees
f and critical fee rate f̂ should remain aligned. This argument struggles for a
few reasons, to do with the structure of the markets being considered.

• As the critical fee rate depends on the volatility of the asset, it will typ-
ically vary over short to moderate time periods. For example, we see in
Figure 2 that the volatility of the market has varied significantly (e.g. by
a factor of at 5) over the past year. However, the Uniswap fee rate is
generally set over longer periods, and cannot easily equilibriate.

• As it is not possible to enter into a short position on Uniswap, there is
currently only limited pressure on fees to equilibriate. This may be modi-
fied by trading in Panoptions, but would depend on the streaming premia
which Panoptions yield. If short positions on Uniswap (corresponding to
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long-put positions in Panoptions) do not have sufficiently negative stream-
ing premia, efficiency of markets would suggest that there will be signif-
icant demand for these products, which are only in limited supply (de-
pending on the presence of long-options traders). If the streaming premia
is endogenized (or tied to the economic fundamentals through the above
no-arbitrage argument), then market efficiency in the Panoptions market
would naturally impact the Uniswap fee rate, leading to equilibrium.

4.2 Bounds on Panoption streaming premia
Within Uniswap v3, it is only possible to enter into a long-liquidity provision
position, corresponding to concave increasing payoff functions V . The introduc-
tion of Panoptions allows agents to effectively enter short positions relative to a
Uniswap LP (in terms of the discussion in Section 3.3, the trader’s payoff ⌘ can
be non-concave and/or nonincreasing) and so the fee structure on Panoptions
needs to be treated carefully.

Panoptions come with a streaming premium model, where the owner of a
panoption with payoff ⌘ will receive a streaming premium with rate g (which
depends on ⌘ and the current state of the market). By taking g < 0, we see
that this can effectively model payment of a streaming premium fee.

By perfect analogy with the analysis in the previous section, we can write
down the bound on the streaming premium fee which is required for no-arbitrage
within the Panoption market (assuming trades can also be offset in the liquid
market, as described before):

gs  ĝt = �
1

2

2X

i,j=1

@i@j⌘(St)
dhSi, Sj

it

dt
�

⇣ 2X

i=1

@i⌘(Ss)S
i
t

⌘d logBt

dt

= �
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2
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i,j=1

@i@j⌘(Ss)(�s�
>
s )

(i,j)Si
sS

j
s �

⇣ 2X

i=1

(@i⌘(Ss))S
i
s

⌘
rs .

Assuming the interest rate r = 0, we observe that for ⌘ convex, this quantity
is negative, indicating that the owner of such a Panoption must be required to
pay a substantial fee in order to avoid arbitrage opportunities.

We note in passing that the only quantity in this fomula which is not directly
observable is the instantaneous volatility �. Unlike in Black–Scholes pricing for
traditional European options, where the volatility needs to be estimated over
the remaining maturity period of the option, here we only need an estimate of
the value of the instantaneous volatility at the present time.

5 Challenges for the Panoptic protocol

In this section we present some scenarios which, depending on the precise im-
plementation of the Panoptic protocol, may render the market for Panoptions
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undesirable for participants. We will consider how various fees can be used to
resolve these issues in later sections. This section should be interpreted as points
for further discussion and development in the protocol specification.

In what follows, we say a position is a short-put position if it corresponds to
a concave increasing payoff. These positions correspond to payoffs which can be
achieved by trading within the Uniswap market. We describe the corresponding
position (which is then available to be traded against general payoffs) as the
short-put liquidity. A general payoff is one which is not concave increasing.

5.0.1 Streaming payments

Under the current specification of the protocol, a general position ⌘ can only be
entered when a sufficient short-put position V P is already in place (i.e. when
V P + ⌘ remains concave increasing). Suppose an agent creates a short-put
position V P , then quickly afterwards offsets this by creating a corresponding
position ⌘ = �V P . They then close out the short-put position. If the protocol
does not close their ⌘ position simultaneously, they have created a net invalid
position for the Panoptic protocol. Note, this does not automatically mean that
such a position is impossible, merely that the Panoptic protocol is unable to
achieve the desired payoff by positioning in the Uniswap market.

Depending on the specification of the contract, the natural default coun-
terparty is the Panoptic-LPs – the payoff ⌘ is guaranteed by the LP funds in
the Panoptic liquidity pool. If the position ⌘ is not charged a sufficiently large
streaming premium fee, this creates an arbitrage opportunity, which will be
exploited against the Panoptic-LPs.

5.0.2 LP exposure to market risk

If it is possible to establish a net position which is not short-put (due to incom-
plete close-out of general payoffs when short-put liqudity is withdrawn) then,
in addition to the above concerns regarding sufficient streaming premium fees,
Panoptic-LPs are exposed to market risk (as the underwriting body for the
general payoff), which should be made clear in the protocol rules.

5.0.3 Closeout and commission fees

Now suppose that general positions are closed out whenever short-put liquidity
is withdrawn. The decision of which positions to close out needs to be made
clear, and will have consequences for traders. For example, an agent establishing
a general position will pay a commission fee to Panoptic-LPs (and possibly
providers of short-put liquidity, depending on the protocol fee rules). Similarly,
an agent establishing a short-put position will pay a commission fee to Panoptic-
LPs.

However, this creates an opportunity for a Panoptic LP, who can withdraw
liquidity immediately after the commission fee is received, and close out the
downstream positions. If the Panoptic-LP is not charged a withdrawal fee (and
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similarly if a short-put position is not charged an execution fee), and the fee
for providing new Panoptic-LP liquidity is small, this presents an arbitrage
opportunity.

This suggests that some close-out/withdrawal fees for short-put positions
and Panoptic-LPs, or an escrow system for the commissioning fee income (where
fees are only paid when liquidity is provided for a sufficient period of time),
should be in place.

5.0.4 LP rewards for long-term positions

In the current specification, the Panoptic-LP only receives fees when option
positions are created. This leads to a difficulty when a short-put position is
held over a long period, as the short-put holder is exploiting Panoptic-LP liq-
uidity without rewarding Panoptic-LPs for this. In particular, this means that
transferring a short-put position between third parties (through a further smart
contract) is strictly better than establishing them directly within the protocol,
as no fees would need to be paid.

5.0.5 Margin rules and closeout

The traditional view of margin accounts is that they eliminate counterparty
risk, as any party which defaults on a contract will provide sufficient cash to
enable the party defaulted on to recreate their position in the market. If a rule
is adopted whereby the exercise of a short-put position will cause the closeout
of a general position ⌘, it becomes difficult to determine the risk-management
benefits of the margin account correctly – at the moment of closeout (which
constitutes a form of default from the perspective of the holder of ⌘), there
is no liquidity available with which they can reestablish their position. This
emphasises the necessity of compensating these agents when passively closed
out.

5.0.6 Closeout risk

A higher order effect, depending on the implementation of closeout rules, is as
follows: Suppose the protocol has established a large short-put position, but
has almost fully offset this through the sale of general positions. The available
short-put liquidity is then quite small. If an agent purchases a general position,
they will increase the risk of closeout for all general positions (depending on
the priority rule for closeout). This should be reflected in the fees paid for
establishing a general position, and in the priority rules for closeout.

5.0.7 Uniswap and Panoptic fees for Liquidity

Under the current specifications, a short-put position will earn, in addition to the
changes in value due to the position, the same fees as in Uniswap v3. This implies
that Panoptions will not directly contribute to closing the statistical arbitrage
that is currently present in Uniswap, and there is limited direct incentive for
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a short-put trader to trade through Panoptions, rather than as a Uniswap-
LP. (There is, however, an indirect incentive, as Panoptions enable leveraged
positions.) This may limit the attractiveness long-term of the long-put position,
if it remains a net-loss position for traders.

6 Fees and streaming payments

We propose below a fee structure extending that already proposed as part of
the panoptic protocol, which ensures the following properties:

• Short-put positions are rewarded at a rate at least as high as a direct
deposit in Uniswap.

• General positions are required to pay a no-arbitrage streaming premium
fee, or Uniswap fees if higher.

• Panoptic-LPs are protected from arbitrage in case of short-put exercise, if
there is an incomplete closure of corresponding short-put positions (they
face a market risk, but are rewarded at a higher rate than uniswap fees).
They receive fees depending on utilization of the pool, rather than purely
through churning of option positions.

These three properties should ensure that the Panoptic protocol provides eco-
nomic value to all participants – Panoptic-LPs earn commission fees and ongo-
ing fees when their liquidity is used; short-put positions earn more than they
would earn in Uniswap, and general positions are made available for use, at an
economic fee.

6.1 Proposed fee structures
We here outline some proposed cashflows for each agent type, which should
eliminate the concerning situations above. The precise details of how these
payments are made (in particular, who pays the gas fees and initiates the corre-
sponding balancing transactions between margin accounts) we leave for future
discussion, as these depend on the precise structuring of the panoptic proto-
col. These suggestions should only be taken as indicative of the broad economic
considerations at play, rather than as a concrete or exhaustive suggestion.

6.1.1 Panoptic short-put holder

An options trader who ‘purchases a short-put’ effectively is moving assets from
the panoptic pool into Uniswap. Their cashflows at each time are the sum of:

• At initial time

SA1: Depositing a sufficient margin account balance.
SA2: Payment of initial commission fees based on pool utilization.
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• During the life of the option

SB1: Payment of leverage fees (given by a fixed percentage of the initial
commission fee SA2 if the trade were to be restarted at the current
time)

SB2: Margin account rebalancing payments (based on price moves in Uniswap)
SB3: Receipt of share of Panoptic streaming premium

• At the time of exit:

SC1: The payoff in the position in Uniswap, including the fees earned in
Uniswap, minus the initial value deposited into Uniswap

SC2: Receipt of remaining margin account value
SC3: Liquidation fees to general position holders (GC3), if needed
SC4: Receipt of partial refund of commission fees if closeout occurs because

of the departure of a liquidity provider (LC2)

6.1.2 Panoptic general position holder

An options trader who enters into a general (not concave increasing) position
effectively is moving assets around and out of Uniswap into the Panoptic pool.
Their cashflows at each time are the sum of:

• At initial time

GA1: Depositing a sufficient margin account balance.
GA2: Payment of initial commission fees, based on size of short-put position

and LP pool at relevant level.

• At each time before exit:

GB1: Payment of leverage fees for impact on Panoptic LPs (given by a
fixed percentage of the corresponding initial commission fee GA2 if
the trade were to be restarted at the current time).

GB2: Margin account rebalancing payments (based on price moves in Uniswap)
GB3: Payment of share of Panoptic streaming premium (cf. SB3)

• At the time of exit:

GC1: The change, over the lifetime of the option, of their uniswap position,
including fees earned.

GC2: Receipt of remaining margin account value.
GC3: Receipt of partial refund of commission fees if closeout occurs because

of the departure of a short-put or liquidity provider (SC3, LC2)
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6.1.3 Panoptic Liquidity Provider

A Panoptic liquidity provider faces the following cashflows:

• When they first provide liquidity

LA1: Assets deposited in Panoptic liquidity pool

• At each time:

LB1: Receipt of initial (SA2, GA2) commission fee and leverage (SB1) fees
LB2: Receipt of any net imbalance in streaming premia (GB2�SB3)
LB3: Any changes in value due to an excess of short positions

• At time when they withdraw liquidity

LC1: Receive value of share of Panoptic pool
LC2: Liquidation fees if needed (SC3, GC3)

6.2 Fee specifications
We now specify the various components of these fees.

Margins: (SA1, LA1, SB2, GB2, SC2, GC2) These are determined through margin
premia calculations and mark-to-market conventions.

SA2: This is specified on the Panoptic protocol webpage. The use of a decreas-
ing commission based on pool utilization helps ensure liquidity providers
achieve a desired revenue stream.

GA2: This is paid to enter a general position, and would naturally be based on
the volume of short-put liquidity available. The role of these payments
depends on the details of the protocol – if the protocol automatically
shuts down general positions when liquidity falls to zero, then payments
GA2 can be held in escrow to provide a reward to traders for the adverse
selection effect of their positions being closed. In particular, if there is little
remaining short-put liquidity available (due to many general positions
already having been created), creation of a new general position would
increase the risk of adverse closeout to all general positions, and these fees
could be held to compensate this risk.

SB1, GB1: This payment is needed to compensate liquidity providers for option po-
sitions which are held over long durations. A natural rule of thumb is to
set this at a small percentage (say 5%) of the initial commission rate SA2
or GA2, perhaps with a rule that this is only implemented for positions
which are held for longer than 20 days.

SC3, GC3: This payment is a premium paid when a short-put position is closed,
to compensate general positions which may need to be closed out. A
natural requirement is for some percentage of the commission fee GA2 to
be refunded to the short-put holder as payment GC3.
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SP — Streaming Premia: (SB3, GB3, LB2) This payment is used to ensure
that purchasing short-put Panoptions is preferable to directly trading in
Uniswap, and to remove the arbitrage opportunities for general positions.
Essentially, there are two components to this: (1) general holders remove
liquidity from uniswap, and therefore should compensate for the corre-
sponding uniswap fee income (ft). (2) short-put holders are entering into
positions with a negative no-arbitrage streaming premium ĝ, and should
compensate other market participants for this.
General position holders therefore pay a streaming premium fee GB3 =
max{ft,�ĝt}, where typically �ĝt > ft. Short-put holders are guaranteed
to receive the Uniswap fees ft, together with the streaming premium SB3 =
max{0,�ĝt� ft}. This is shared proportionally among short-put holders,
in proportion to the utilization of their contribution by general option
holders.
If there is an excess of general positions (due to incomplete closeout on
withdrawal of short-put liquidity), the residual streaming premium pay-
ments revert to the Panoptic LPs (as payment LB2).
Note that this ensures Panoptic-LPs and long-put positions are rewarded
for the presence of general position traders. In any event, Panoptic-LPs
achieve a fully-funded position (as LB2 implies they recieve the streaming
premium for their implied market exposure due to an excess of short-put
positions). Short-put positions are rewarded with a higher cashflow than
they would achieve from Uniswap fees, partially eliminating the systematic
losses of liquidity provision. General option positions must pay a larger
streaming premium fee than the negative of the uniswap fees, but are
rewarded with access to a short position, which is not otherwise available
on the market.

SC1: This is simply the final uniswap value, including fees. We note that these
fees may come in part from streaming premium payments made by gen-
eral option positions, as given in the difference between GB3 and SB3
(i.e. when a general option holder alters the position of a short-put holder,
the streaming premium they pay will be partly used to compensate the
short-put holder for the corresponding Uniswap fees).

GC1: This is the change in the uniswap pool value. Some fees may be included in
this, if the general position includes some concave increasing parts, which
would earn uniswap fees. (However, these could be excluded for simplicity,
as the higher fees on general panoptions should make it preferable to
provide short-put liquidity as part of a portfolio, rather than including it
in a general position.)

LB3: We expect that the implementation of the protocol will include a provision
by which, when short-put positions are closed, if there is insufficient short-
put liquidity remaining, some general option positions will be closed out.
However, depending on details of implementation, this may not occur
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completely, resulting in a net not-short-put position being created. In this
case, LB3 accounts for the changes in the value of the Panoptic pool which
result from this implied market exposure (and LB2 ensures that Liquidity
Providers are compensated for this risk).

LC2: When a Panoptic-LP decides to withdraw liquidity, they may need to
compensate option holders for the consequence loss of liquidity within the
pool. One approach would be to use a process similar to that used for
the commission fees (SA2, GA2), to issue (partial) refunds of the commis-
sion fees to option holders whose positions are closed out passively by a
Panoptic-LP departure. The closeout process needs to be specified fairly
carefully, particularly if the total volume of options is permitted to ex-
ceed the LPs position (through offsetting effects of long and short option
positions).

6.2.1 Remaining issues

One point which is not fully developed above, but will be important in ap-
plication, is the sizes and flows of the payments associated with closeout of a
position, particularly when the closeout is initiated by another party to the one
being closed out. This can occur either when a liquidity provider withdraws
from the panoptic pool (which can closeout short-put holders and general op-
tion holders), or when a short-put holder exits their position (which can closeout
general option holders, depending on the rules of the protocol). Some exit fees,
to compensate for this adverse selection effect9, would be natural to implement.

Note also that the use of a margin requirement prevents agents from simply
allowing a position to continue indefinitely, as they will be required to continue
to service margin calls, leverage fees and streaming premia. The precise details
of the margin calculations, mark-to-market rules, and related issues, are beyond
the scope of this report.

7 Initial and maintenance margin

Allowing certain parties to open leveraged long and short positions on Uniswap
(or other CFMs) using the Panoptic protocol opens the Panoptic liquidity
providers to credit and liquidity risks.

7.1 Credit, liquidity risk and funding
Credit risk arises from the situation where the party that opened the leveraged or
short position on Panoptic but the collateral balance controlled by the Panoptic
protocol falls below the value of their position. At that point a rational party

9The usual argument that the margin payments fully compensate for adverse selection
does not hold here, as these closeouts correspond to being forced out of positions which
are subsequently not available to re-enter. This leaves market participants open to adverse
selection risks, where their exposures are changed at times they would not choose.
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will walk away from such position opening the panoptic liquidity providers to
a loss. This risk can be managed and mitigated by Panoptic protocol holding
sufficient collateral, which will be defined below, and allowing any participant
in the Ethereum blockchain to take over delinquent parties’ position while it is
still profitable (execute a close-out transaction on the Panoptic protocol to close
the offending party out and take over).

Liquidity risk arises when no participant on the Ethereum network is willing
to execute the closeout transaction. This may arise at times of high uncertainty
or other market dislocations. It can fundamentally only be mitigated by the
collateral requirements being sufficiently large to make closeout attractive in
most situations.

Fix a period of time ⌧ > 0 e.g. 1 hour or 24 hours. The time must be
sufficiently long for all the participants in the blockchain to be able to observe
state and execute transactions.

We will use St to denote the underlying price; in previous sections this
denoted not the Uniswap v3 pool implied price but a price on the external
exchange. Due to presence of arbitraguers we know that the Uniswap implied
price tracks the external price closely. Thus whenever a value like St is needed
as an input to a calculation we assume that Panoptic protocol contract can read
it on chain from the Uniswap v3 contract and this is sufficiently close to the
“true” price.

Let us first focus on the credit risk: the change in value of a position of the
party between time t and t+⌧ will be ⌘(St+⌧ )�⌘(St). Initially we may think that
it is enough for the margin to hold balance x such that P(⌘(St+⌧ )� ⌘(St)+x 
0)  ↵ for some small probability ↵. This would lead us to set the credit risk
component of the margin to

VaR↵(⌘(St+⌧ )� ⌘(St)) = inf{x 2 R : P(⌘(St+⌧ )� ⌘(St) + x  0)  ↵} .

However this doesn’t tell us how big the shortfall would be in case the collateral
reserve x is not sufficient. For this reason it makes more sense to set the value
at the expected shortfall in case the reserve from VaR is insufficient:

ES�(⌘(St+⌧ )� ⌘(St))

=
1

�

Z �

0
VaR↵(⌘(St+⌧ )� ⌘(St)) d↵

= E[�⌘(St+⌧ )� ⌘(St)|⌘(St+⌧ )� ⌘(St) < VaR�(⌘(St+⌧ )� ⌘(St))] .

However, in the event of a potential default (where the owner of an option
no longer holds sufficient margin, and so their position is due to be closed), the
margin account is designed to enable counterparties to close the position, over a
reasonable timeframe, without incurring a loss. This means that we should also
include the streaming premium which the position is required to pay (during
the close-out period) in the computation. As the streaming premium is random
(as it depends on the current price), we should include it in the risk calculation.

Here we arrive at a distinction between positions which provide liquidity to
uniswap and those which do not. For a position which removes liquidity from
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uniswap, the panoption streaming premium is always required to be paid, and
so should be included directly. However, for a position which adds liquidity to
uniswap (i.e. a short-put position and compound positions based on it), there
is no guarantee that the streaming premium will be received, as this depends
on the utilization of the panoption component of the uniswap pool by other
panoption purchasers. Recalling that, for a panoption holder, ĝ > 0 indicates
receiving a fee, while ĝ < 0 indicates payment of a fee, if we assume a utilization
level ⇢ < 1 (which may be ⇢ = 0 for simplicity) the ultimate streaming premium
payments occur at the rate

ĝ⇤t = ⇢max{ĝt, 0}+min{ĝt, 0} = ⇢[ĝt]
+
� [ĝt]

�, (4)

with [·]+ and [·]� the positive and negative part operators respectively.
This can be further corrected to account for a liquidity providing position

earning the uniswap fees, if desired. The effect of including ⇢ < 1 is to reduce
the implied streaming premium which is earned by providing liquidity through
panoptions.

Thus we arrive at the minimum value of collateral which a party must hold
which covers the credit risk and the streaming fee payment:

mt = ES�


⌘(St+⌧ )� ⌘(St)�

Z t+⌧

t
ĝ⇤s ds

���Ft

�
.

If the collateral balance falls below this it presents too much credit risk to
Panoptic liquidity providers and hence the protocol will allow the position to
be adversarially closed out.

The protocol should set an initial margin level by scaling the maintenance
margin by a factor:

minitial
t := (1 + c)mt ,

with c > 0 to prevent parties from immediately being open to a close-out trade
due to market price moves.

7.2 Stochastic models and linearisation
The formula for maintenance margin (7.1) is purely abstract: one needs to
choose a stochastic model to be able to evaluate this. The model can be any of
Black–Scholes, Heston, SABR, . . . . Even upon a choice of model and calibration
of model parameters it will be impossible to evaluate (7.1) on the Ethereum
blockchain: the gas cost itself would be prohibitive. However, being able to
know (7.1) on chain is essential because the contract has to decide whether a
close-out trade is permitted or not.

This is where being able to effectively simplify (7.1) is essential. This can
be done by observing that most of the variability in mt will come from the
moves in price of the underlying assets (which can be observed from relevant
Uniswap pools) and perhaps few other variables which can be observed or easily
calculated on-chain e.g. current volatility estimate from the relevant Uniswap
pool trades.
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To be more specific let us assume that the underlying Uniswap pool sets price
P 1,CFM

t

P 2,CFM
t

at time t for an infinitesimally small trade. We are implicitly assuming

that one of the assets in the pool is the numeraire asset and so P 1,CFM
t

P 2,CFM
t

is the
price of the other (implicitly risky asset) in terms of the numeraire (e.g. USDC
is the numeraire, ETH is the risky asset). Let us assume that we wish to
use the Black–Scholes model for calculating the maintenance margin. Then we
postulate that St ⇡

P 1,CFM
t

P 2,CFM
t

and its evolution in the real world measure is

dSt = µSt dt+ �St dW
P
t ,

where µ and � are model parameters to be chosen (e.g. by calibrating to his-
torical data or forward looking data from options markets).

The credit risk part is ES�[V (St+⌧ ) � V (St)|St]. Given that we know that
St+⌧ |St has log-normal density with mean and variance fixed by µ,� we can
easily obtain ES�[Xt+⌧ |St] by numerical integration or by a Monte-Carlo ap-
proximation. Such computation will of course be too hefty for Ethereum and
so instead we postulate that

ES�[V (St+⌧ )� V (St)|St] ⇡
nX

i=0

RF(i)
⌘ Si

t ,

where RF(i) = RF(i)
V (�, µ,�, ⌧) is the i-th order risk factor which can easily be

obtained off-chain. On-chain we will only need to evaluate calculation involving
RFi

V (which Panoptic protocol can store and update via governance), St (which
can be read from the underlying Uniswap pool) and a sum and products.

Similarly we can set

ES�


�

Z t+⌧

t
ĝ⇤u du

����St

�
=

1

2
ES�

Z t+⌧

t

�
⇢[⌘00(Su)]

+
� [⌘00(Su)]

���2S2
u du

����St

�

⇡

n0X

i=0

FF(i)
⌘ Si

t .

Here FF(i)
⌘ = FF(i)

⌘ (�, µ,�, ⌧) are the fee factors. The appropriate risk and
fee factors are obtained by ordinary least squares for representative values of
St and for the expectations evaluated by Monte–Carlo or numerical integration.
This is an off-chain computation.

Note that if we chose another model for the underlying e.g. Heston or SABR
the only thing that would change is that we now need two “observable” values
on chain: the current risky asset price St in terms of numeraire and its volatility.
We will then have

ES�[⌘(St+⌧ )� ⌘(St)|St,�t] ⇡
nX

i,j=0

RF(i,j)
⌘ �i

tS
j
t

26



and

ES�


�

Z t+⌧

t
ĝ⇤u du

����St,�t

�
⇡

n0X

i,j=0

FF(i,j)
⌘ �i

tS
j
t .

Note that:

i) This only sets out a high level overview how we could go about providing
margin levels and fee premiums in a principled way on the Panoptic pro-
tocol. The next step to move further would be to decide which stochastic
model we favour and carry out analysis of how many factors are needed
and their stability. As we’re looking at basically a Taylor series expansion
including more terms will improve stability of the risk factors but it means
more data needs storing on Ethereum.

ii) Using S0�St (and �0��t in case of stoch. vol. model) with some reference
values S0 and �0 will improve stability but again, it’s another value to store.

iii) As currently written we need risk factors for each payoff V . This means
that further approximation / simplification will be needed to split it into a
part that’s position dependent and a part that’s universal, see Example 4.3.

Remark 7.1. The rule here, based on expected shortfall, is often simplified to
give an initial and maintenance margin based on a multiple of the asset values
held. This is the motivation behind ‘haircut’ rules in traditional markets. While
simple, this poses a difficulty for the panoptic protocol, as panoptions do not
have a simple ‘price’ (as they are only bought on margin, so only the changes in
their prices are seen). The natural analogue to the ‘price’ of a perpetual option
is the streaming premium (which is chosen to force the price to zero), which is
model-based.

The current specification of the panoptic protocol uses instead a rule based on
the ‘notional value’ of the assets. This needs to be carefully specified, particularly
for compound options (such as strangles or butterflies), as the ‘notional value’
of the margined position is not simple. Given the substantially higher observed
volatilities in crypto assets, it is not clear that rules of thumb from classical
markets are appropriate.

8 Agent-based model - Panoptic and Uniswap v3

We turn into numerical simulations to study the Streaming Premia SB3, GB3 in
different scenarios of low / high price volatility and low / high CFM fee (1��),
as well as the initial margin account required from the short-put holder and the
general position holder (denoted GPH). In this section we model a CFM with
concentrated liquidity like Uniswap v3. We repeat the simulations for a CFM
without concentrated liquidity like Uniswap v2 in Appendix B.

We consider three agents, a) a short-put holder who moves assets from the
Panoptic pool into Uniswap, b) a general position holder who utilises a portion
of the short-put holder assets by moving them back in the Panoptic pool, and

27



pays a streaming premia to compensate for the Uniswap fee income the short-
put-holder would receive had they not entered the general position. And c)
an arbitrageur who trades between the CFM and a reference market to make
risk-free profits.

8.0.1 Short-put holder and CFM

We consider a CFM as in Example 3.3 with ✓ = 1/2, x1 the numeraire. Ini-
tial reserves (x1

0, x
2
0) are entirely provided by a short-put holder through the

Panoptic pool.

8.0.2 General position holder

At initial time a general position holder (denoted by GPH) withdraws a portion
� 2 (0, 1] of the CFM liquidity in a certain tick range and deposits it back in the
Panoptic pool. The reserves left in that tick range satisfy the trading equation
3.3 with the constant  (1� �) · .

When the position is closed at time ⌧ , the GPH gets a payoff

⌘S0(S⌧ ) = � · 

⇣ 1
p
S0
�

1
p
Pu

⌘
S0 + (

p
S0 �

p

P l)

�

� � · 

⇣ 1
p
S⌧
�

1
p
Pu

⌘
S⌧ + (

p
S⌧ �

p

P l)

�
,

which is a convex function in S⌧ , see Figure 3.
In other words, the GPH has purchased a perpetual American option with

payoff ⌘Stk
(·). The theoretical non-arbitrage streaming fee using a delta hedge

is

ĝt(St) = �
1

2

2X

i,j=1

@i@j⌘S0(St)
dhSi, Sj

it

dt
�

⇣ 2X

i=1

@i⌘S0(St)S
i
t

⌘d logBt

dt
.

Under zero risk-free rate, ĝt is negative because of the convexity of ⌘St0
(·).

We can see ĝt as the rate fee paid by the GPH to the short-put holder, the issuer
of the perpetual American option. The shaded area in Figure 3 corresponds to
the tick range where the GPH opened their position, which in addition is the
only price range where ĝt is non-zero.

Remark 8.1. We need to be a little careful here, as the payoff should always be
shifted (vertically) to ensure the current value of the payoff is zero – in this case,
as S0 = 10.5, this is already the case. This shift is needed to account for the
fact a GPH does not pay initially when purchasing a panoption.

8.0.3 Arbitrageur

Price discovery occurs in a second reference market, where St denotes the price
of asset x2 in terms of the numeraire x1 at time t. We model the price St by a
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Geometric Brownian Motion

dSt = �StdWt, S0 > 0.

Whenever the price of asset x2 in terms of the numeraire x1 in the CFM is
different than St, there might be an arbitrage opportunity. An arbitrageur
will automatically make the necessary trades to maximise their profit. The
arbitrageur who trades (�x1,�x2) when reserves are (x1, x2) will incur cost
f(�, x1, x2,�x1,�x2) and solves the optimisation problem

�x2,⇤ := max(�x2
CFM, CEX,�x2

CEX, CFM),

where
�x2

CFM, CEX := argmax
�x2

�x1
· S1
��x2

� f(�, , x1, x2,�x1,�x2)

such that  (x1 ��x1, x2 +�x2) =  (x1, x2), �x2
� 0,

�x1
· S1
��x2

� f(�, x1, x2,�x1,�x2) � 0

and
�x2

CEX, CFM := argmax
�x2

�x2
��x1S1

� f(�, x1, x2,�x1,�x2)

such that  (x1 +�x1, x2 ��x2) =  (x1, x2), �x2
� 0,

�x2
��x1S1

� f(�, x1, x2,�x1,�x2) � 0

with the subindexes of �x2
·,· denoting the order of the markets where the arbi-

trageur goes short and long in asset x2. If �x2,⇤ = 0, then there is no possible
trade for which an arbitrageur makes a profit.

8.0.4 Fee specifications of the simulation

Following the fee specifications in Section 6.1 and focusing in SB3, GB3, the
agents will receive / pay the following:

a) Short-put holder:

– At t = 0 deposits sufficient liquidity in a margin account balance.
– For t 2 [0, T ) receipt of CFM fee income given by (1 � �) paid by the

arbitrageur’s trades.
– For t 2 [0, T ] receipt of the Panoption streaming premia paid by the

GPH (denoted by SB3 in Section 6.1).

b) General position holder

– At t = 0 deposits sufficient liquidity in a margin account balance.
– For t 2 [0, T ] payment of the Panoption streaming premia to the short-

put holder (denoted by GB3 in Section 6.1).

c) Arbitrageur

– For t 2 [0, T ], payment of the CFM fee to the short-put holder.
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8.1 Simulation
We run the simulation on discrete times⇧ := {0, t1, t2, ..., T} with initial reserves
(x1

0, x
2
0) and fee (1� �); initial price S0 and volatility �.

For every t 2 ⇧:

1. If t = 0, the short-put holder moves the liquidity from the Panoptic pool
to the CFM.

2. The arbitrageur makes the necessary trades resulting from optimisations
in the CFM and in the reference market to make a risk-free profit, and
pays the corresponding CFM fee to the short-put holder.

3. If t = 0, a GPH opens a position by withdrawing liquidity from the CFM.
We run three scenarios displaying different payoffs.

We study the initial margin account for the GPH and short-put holder, corre-
sponding to positions with convex and concave payoff respectively:

- Positions with convex payoff – positions that withdraw liquidity from
Uniswap to deposit it in the Panoptic pool. These correspond to Fig-
ures 3a, 3b, 3c.

- Positions with concave increasing payoff – positions that purely move liq-
uidity from the Panoptic pool to Uniswap. These correspond to Figure 3d.
Note that the income fee for these positions will come from a GPH that
utilises a portion of the assets to open their position. For the fee payments
in these positions, we assume a utilization rate ⇢ = 0.5 in equation (4).

- Positions with general payoff – positions that both withdraw and deposit
liquidity in Uniswap from the Panoptic pool. These correspond to Fig-
ures 3e, 3f, which are not concave increasing. We again consider the
utilization rate ⇢ = 0.5 in equation (4).

More details about the different positions that we study can be found in Ap-
pendix A.

We calculate the initial collateral the position holder must deposit in the
margin account, given by

m0 = ES�

"
⌘(S1)� ⌘(S0)�

Z T

0
ĝ⇤s ds

����S0 = s0

#
, (5)

where ⌘(St) is the value/payoff of the option at time t.
The aim for our simulations is two-fold, a) study the the fee income of a

short-put holder with and without the Panoption fee income (SB3), and b)
study the the initial margin account (5) in different payoff scenarios.

We take � 2 {0.2, 0.4, 0.6, 0.8}, fix S0 = 10.5, x1
0 = 100, x2

0 = 10 and run the
above simulation 1000 times for different values of � 2 [0.97, 1].
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(a) Payoff ITM call. (b) Payoff OTM call. (c) Payoff strangle option

(d) Payoff short OTM put (e) Payoff short OTM call (f) Payoff short strangle

Figure 3: Payoff of positions. Shaded area indicates the tick from where the
GPH withdraws liquidity. The dashed line indicates the initial price of the risky
asset in the simulation.

8.1.1 Initial margin account of general position holders - positions with convex
payoff

We consider in this subsection the initial margin account of the positions that
withdraw liquidity from Uniswap to deposit it in the Panoptic pool. These
correspond to Figures 3a, 3b and 3c. In this case, as the payoff is convex, we
have ĝ = ĝ⇤ < 0 in equation (4).

Figure 4 shows the collateral needed by the GPH to open their position.
The expected shortfall is calculated with � = 0.9 and fixed Uniswap fee 0.3%.
In addition, we also plot ES�[⌘(S1) � ⌘(S0)], ES�[�

R 1
0 ĝsds] and their sum,

i.e. the expected shortfall when considering the payoff and streaming premium
separately. Recall that ĝs is negative because of the convexity of ⌘(St), hence
ES�[�

R 1
0 ĝsds] > 0, i.e. the margin account should hold enough collateral to pay

for the streaming premia in the considered future period of time. Despite the
fact that ES� satisfies the subadditive property ES�[X+Y ]  ES�[X]+ES�[Y ],
Figure 4 provides an intuition on how the collateral is decomposed and the offset
of the risks between the underlying and the streaming premia.

The three considered options have limited downside, hence ES�[V (S1) �
V (S0)] will be small. In the particular case of the strangle option, the GPH will
have to pay the premium fee whenever the price crosses the two ranges [9, 10)
and [11, 12), therefore the collateral provided by the GPH in this case will have
to be bigger than in the ITM / OTM call examples, where the GPH has to pay
a premium fee when the price only crosses one range.

We observe in Figure 4 that there appears to be negligible offsetting of the
risks between the underlying and the streaming premia – in the examples con-
sidered, one can compute the margin requirements separately for the streaming
premium and the underlying payoff and sum them. This is due to a degree of
correlation between the payoff and the streaming premium, which removes any
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Figure 4: Collateral m0 in blue, ES�[⌘(S1)� ⌘(S0)] in orange ES�[�
R 1
0 ĝ⇤sds] in

green for the first three positions, and for different values of �.

beneficial hedging effect. We see that the risk associated with the streaming
premium is a significant factor, as we see in Figure 5, where we plot the distri-
bution of the streaming premia for the Strangle option payoff given in Figure
4, in the case where � = 0.4. This suggests that the main risk management
concern, for convex position holders, is often being able to guarantee payment
of the streaming premium.

Figure 5: Distribution of the streaming premia for the Strangle option payoff

8.1.2 Initial margin account of general position and short-put holders

We consider in this subsection the initial margin account of the positions that
involve moving liquidity from the Panoptic pool to Uniswap. These correspond
to Figures 3d, 3e and 3f. In our simulations, we also consider the presence of a
general position holder that pays some streaming premia to utilise the liquidity
of the short-put holder to open their position.

Figure 6 shows the collateral needed by the GPH to open their position. The
expected shortfall is calculated with � = 0.9 and fixed Uniswap fee 0.3%. As
before, we also plot ES�[⌘(S1)� ⌘(S0)] and ES�[�

R 1
0 ĝ⇤sds].

As before, we observe in Figure 6 that there appears to be negligible off-
setting of the risks between the underlying and the streaming premia – in the
examples considered, one can compute the margin requirements separately for
the streaming premium and the underlying payoff and sum them.
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Figure 6: Collateral m0 in blue, ES�[⌘(S1)� ⌘(S0)] in orange ES�[�
R t
0 ĝ⇤sds] in

green for the three positions, and for different values of �.

Interestingly, the simulations show little correlation between the underlying
volatility and the expected shortfall of the position. This indicates that the
eventual margin calculations might not require an approximation of the volatil-
ity of the underlying asset in some cases (even though this quantity will be
needed for calculation of the streaming premium).

8.1.3 Panoption fee income (SB3) in OTM call - High and low fee scenarios

We run simulations with and without the the presence of a GPH, i.e. with and
without the Panoption fee income (SB3). The goal is to evaluate the incentives
for a short-put holder to open a position (deposit liquidty to CFM through
Panoptic) compared to directly depositing liquidity to the CFM without the
Panoptic intermediate step.

In this section we consider the fees due to a short-put holder, and how the
presence of the GPH (a long-put holder) changes their income. We consider the
position with payoff as in Figure 3b.

Figure 7 shows the the reference price evolution and the CFM price evolution
for one simulation for low CFM fee (0.3%) and high CFM fee (3%). The smaller
the fee (the higher the value of �) the closer the CFM price process depicted in
orange follows the reference market price St.

For these two scenarios the CFM and the GPH non-arbitrage fee rates are
shown in Figure 8 with and without GPH (blue and orange respectively). The
area between both curves provides the additional fee income that the short-put
holder receives under the presence of the GPH. Figure 8b indicates that under
a high CFM fee regime most of the short-put holder fee income comes from the
arbitrageur’s trades but nevertheless it is still preferable for the short-put holder
to provide liquidity to Uniswap v3 through the Panoptic protocol.

Figure 9 aggregates the results of the 1000 simulations for each considered
�,�. Figure 9a confirms that in our current setting, the short-put holder has
incentives to open a position and these incentives increase with the volatility of
the risky asset, and are not impacted by the Uniswap v3 fee.
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(a) Evolution of CFM price and reference
price in low fee simulation 0.3%

(b) Evolution of CFM price and reference
price in high fee simulation 3%

Figure 7: Evolution of CFM price and reference price in low (left) and high
(right) fee settings

(a) Evolution of fee rate with and without
a GPH with low CFM fee 0.3%.

(b) Evolution of fee rate with and without
a GPH with low CFM fee 4%.

Figure 8: Evolution of fee rate with and without a GPH under different CFM fee
scenarios. The area between the curves indicates the accumulated fee received
by the short-put holder when a GPH opens a position. Note that the Uniswap
v3 fee and the GPH streaming premia are non-zero only when the price St

crosses the range [11, 12), which is where the short-put holder deposited their
liquidity and where the GPH opened their position.
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A Payoffs of position holders

In this section we provide more details of the positions taken by the general
position holders to achieve the studied payoffs.

- Convex payoffs, achieved by the general position holder (GPH) position:

a) ITM call: the GPH withdraws some liquidity from a price range
below the current risky asset price. In addition, the GPH goes long
in the risky asset.
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b) OTM call: the GPH withdraws some liquidity from a price range
above the current risky asset price.

c) Strangle: The GPH withdraws liquidity from two price ranges above
and below the current risky asset price.

- Concave payoffs, achieved by the short-pull holder position.

a) Short OTM put: the short-put holder moves liquidity from the Panop-
tic pool to the Uniswap pool in a price range below the current risky
asset price.

b) Short OTM call: the short-put holder moves liquidity from the Panop-
tic pool to the Uniswap pool in a price range above the current risky
asset price.

c) Short Strangle: the short-put holder moves liquidiry from the Panop-
tic pool to the Uniswap pool in two price ranges above and below the
current risky asset price.

Note that in the above positions, a GPH makes the opposite moves (with
some utilisation percentage), so that the short-put holder receives some
streaming premia from the GPH for using their liquidity.

B Agent-based model - Panoptic and Uniswap v2

We turn into numerical simulations to study the Streaming Premia SB3, GB3 in
different scenarios of low / high price volatility and low / high CFM fee (1��).
The considered CFM models Uniswap v2.

We consider three agents, a) a short-put holder who moves assets from the
Panoptic pool into Uniswap, b) a general position holder who moves a portion of
the assets back in the Panoptic pool, and pays a streaming premia to compensate
for the Uniswap fee income the short-put-holder would receive had they not
entered the general position. And c) an arbitrageur who trades between the
CFM and a reference market to make risk-free profits.

B.0.1 Short-put holder and CFM

We consider a CFM as in Example 3.3 with ✓ = 1/2, x1 the numeraire. Initial
reserves (x1

0, x
2
0) are entirely provided by a short-put holder through the Panop-

tic pool. The CFM trading function satisfies  (x1
t , x

2
t ) = x1

t · x
2
t = (t)2, where

t stays constant as long as no liquidity is deposited in / withdrawn from the
pool.

B.0.2 General position holder

At initial time a general position holder (denoted by GPH) withdraws a portion
� 2 (0, 1] of the CFM liquidity. There reserves left in the CFM satisfy the
equation  (x1

tk , x
2
tk) = �
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When the position is closed, the GPH gets a payoff

⌘Stk
(ST ) =

1

2
(1� �)S1/2

tk �
1

2
(1� �)S1/2

T ,

which is a convex function in ST . In other words, the GPH has actually pur-
chased a perpetual American option with payoff ⌘Stk

(·). The theoretical non-
arbitrage streaming fee using a delta hedge is then

ĝt = �
1

2

2X

i,j=1

@i@j⌘Stk
(St)

dhSi, Sj
it

dt
�

⇣ 2X

i=1

@i⌘Stk
(St)S

i
t

⌘d logBt

dt
.

Note that under zero risk-free rate, ĝt is negative because of the convexity of
⌘Stk

(·). Hence ĝt can be seen as the rate fee paid by the GPH to the short-put
holder, the issuer of the perpetual American option.

B.0.3 Arbitrageur

Price discovery occurs in a second reference market, where St denotes the price
of asset x2 in terms of the numeraire x1 at time t. We model the price St by a
Geometric Brownian Motion

dSt = �StdWt, S0 > 0.

Whenever the price of asset x2 in terms of the numeraire x1 in the CFM is
different than St, there might be an arbitrage opportunity. An arbitrageur
will automatically make the necessary trades to maximise their profit. The
arbitrageur who trades (�x1,�x2) when reserves are (x1, x2) will incur cost
f(�, x1, x2,�x1,�x2) and solves the optimisation problem

�x2,⇤ := max(�x2
CFM, CEX,�x2

CEX, CFM),

where

�x2
CFM, CEX := argmax

�x2

�x1
· S1
��x2

� f(�, , x1, x2,�x1,�x2)

such that  (x1 ��x1, x2 +�x2) =  (x1, x2), �x2
� 0,

�x1
· S1
��x2

� f(�, x1, x2,�x1,�x2) � 0

and

�x2
CEX, CFM := argmax

�x2

�x2
��x1S1

� f(�, x1, x2,�x1,�x2)

such that  (x1 +�x1, x2 ��x2) =  (x1, x2), �x2
� 0,

�x2
��x1S1

� f(�, x1, x2,�x1,�x2) � 0

with the subindexes of �x2
·,· denoting the order of the markets where the arbi-

trageur goes short and long in asset x2. If �x2,⇤ = 0, then there is no possible
trade for which an arbitrageur makes a profit.
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B.0.4 Fee specifications of the simulation

Following the fee specifications in Section 6.1 and focusing in SB3, GB3, the
agents will receive / pay the following:

a) Short-put holder:

– For t 2 [0, T ) receipt of CFM fee income given by (1 � �) paid by the
arbitrageur’s trades.

– For t 2 [tk, T ] receipt of the Panoption streaming premia paid by the
GPH (denoted by SB3 in Section 6.1).

b) General position holder

– For t 2 [tk, T ] payment of the Panoption streaming premia to the short-
put holder (denoted by GB3 in Section 6.1).

c) Arbitrageur

– For t 2 [0, T ], payment of the CFM fee to the short-put holder.

B.1 Simulation
We run the simulation of discrete times ⇧ := {0, t1, t2, ..., T} and initialise the
simulation with reserves (x1

0, x
2
0) and fee (1 � �); initial price S0 and volatility

�. We run the following simulation.
For every t 2 ⇧:

1. If t = 0, the short-put holder moves the liquidity from the Panoptic pool
to the CFM

2. The arbitrageur makes the necessary trades resulting from optimisations
in the CFM and in the reference market to make a risk-free profit, and
pays the corresponding CFM fee to the short-put holder.

3. If t = 0.5, a GPH withdraws 10% of the CFM liquidity and puts it back
in the Panoptic pool. If t > 0.5, the GPH pays the premium fee to the
short-put holder. If t = 1 the GPH closes their position and moves the
necessary liquidity from the Panoptic pool to the CFM pool.

We run simulations with and without the blue step to evaluate the fee income
of the short-put holder with and without the presence of a GPH, i.e. with and
without the Panoption fee income (SB3). The goal is to evaluate the incentives
for a short-put holder to open a position (deposit liquidty to CFM through
Panoptic) compared to directly depositing liquidity to the CFM without the
Panoptic intermediate step.

We take � 2 {0.2, 0.4, 0.6, 0.8} and fix S0 = 10.5, x1
0 = 100, x2

0 = 10 and run
the above simulation 100 times for different values of � 2 [0.96, 1].
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B.1.1 High and low fee scenarios

Figure 10 shows the the reference price evolution and the CFM price evolution
for one simulation for low CFM fee (0.3%) and high CFM fee (4%). The smaller
the fee (the higher the value of �) the closer the CFM price process depicted in
orange follows the reference market price St. For the first low CFM fees scenario,
Figure 11 provides the reserves evolution (x1

t , x
2
t ) with and without GPH (blue

and orange respectively). When the GPH is included in the simulation they
withdraw 20% of the CFM liquidity at time t = 0.5 and close their positions at
time t = 1.

For these two scenarios the CFM and the GPH non-arbitrage fee rates are
shown in Figure 12 with and without GPH (blue and orange respectively). The
area between both curves provides the additional fee income that the short-put
holder receives under the presence of the GPH. Figure 12b indicates that under a
high CFM fee regime and for some of the arbitrageur’s trades the short-put gets
penalised for not having all their liquidity in the CFM and the GPH premium
fee cannot compensate for it.

(a) Evolution of CFM price and reference
price in low fee simulation 0.3%

(b) Evolution of CFM price and reference
price in high fee simulation 4%

Figure 10: Evolution of CFM price and reference price in low (left) and high
(right) fee settings

Figure 11: Evolution of CFM reserves in low fee simulation 0.3% with and
without GPH
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(a) Evolution of fee rate with and without
a GPH with low CFM fee 0.3%.

(b) Evolution of fee rate with and without
a GPH with low CFM fee 4%.

Figure 12: Evolution of fee rate with and without a GPH under different CFM
fee scenarios. The area between the curves indicates the accumulated fee re-
ceived by the short-put holder when a GPH opens a position.

B.1.2 Aggregated results

Figure 13 aggregates the results of the 100 simulations for each considered �,�.
Figure 13a confirms the intuition from the the two examples in the Figure 12. In
our current setting, the short-put holder has incentives to open a position in a
low fee CFM regime, which is in fact a realistic assumption, and these incentives
increase with the volatility of the risky asset.

40



(a) Mean difference of accumulated fee in-
come between simulations with GPH and
simulations without GPH

(b) Standard deviation of difference of ac-
cumulated fee income between simulations
with GPH and simulations without GPH

Figure 13: Mean and standard deviation of difference of accumulated fee income
between simulations with GPH and simulations without GPH for different values
of �,�.

41


	Disclaimer
	Overview
	Liquidity provision in constant function markets
	CFM – an overview
	Connection with perpetual options
	Perpetual option
	Liquidity position in CFM and perpetual option

	Panoptions within Uniswap

	Arbitrage free streaming premia
	Financial market model and assumptions
	Derivation of arbitrage-free fee rate bound

	Bounds on Panoption streaming premia

	Challenges for the Panoptic protocol
	Streaming payments
	LP exposure to market risk
	Closeout and commission fees
	LP rewards for long-term positions
	Margin rules and closeout
	Closeout risk
	Uniswap and Panoptic fees for Liquidity


	Fees and streaming payments
	Proposed fee structures
	Panoptic short-put holder
	Panoptic general position holder
	Panoptic Liquidity Provider

	Fee specifications
	Remaining issues


	Initial and maintenance margin
	Credit, liquidity risk and funding
	Stochastic models and linearisation

	Agent-based model - Panoptic and Uniswap v3
	Short-put holder and CFM
	General position holder
	Arbitrageur
	Fee specifications of the simulation

	Simulation
	Initial margin account of general position holders - positions with convex payoff
	Initial margin account of general position and short-put holders
	Panoption fee income (SB3) in OTM call - High and low fee scenarios


	Payoffs of position holders
	Agent-based model - Panoptic and Uniswap v2
	Short-put holder and CFM
	General position holder
	Arbitrageur
	Fee specifications of the simulation

	Simulation
	High and low fee scenarios
	Aggregated results



